
2016/07/05 14:16 / SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

Table of Contents
Adding a New Device 1 ...

Adding a new .lvclass 1 ..
Programming for your <NewDev>.lvclass 2 ..
Configuring Table appearance 3 ..
Adding your new device 3 ..

Analog Inputs 5 ...
Device Configuration 5 ..
Shared Variables 5 ...

Naming Scheme 5 ..
Data Format 5 ..

Sample Reader 6 ...
Bugs & Feature Requests 7 ...

Feature Requests 7 ..
Major Bugs 7 ..
Minor Bugs 7 ..

Column Types 9 ...
Generic Columns 9 ...

Column 9 ..
DigitalCol 9 ...
SingleValCol 9 ..
TriggerCol 9 ..
MenuCol 10 ..

Master-Only Columns 10 ..
GroupCol 10 ...
ModeCol 10 ..

Feedback Overview 12 ..
TCP Communications 12 ..

Getting the Port: NI Service Locator 12 ..
Communication Protocol 12 ...

Expected JSON Contents 13 ...
General Format 13 ...
Variable Format 13 ...
Command Formats 14 ..

Example Clients 15 ..
Why TCP? 15 ..

Getting SetList: help for the uninitiated 16 ...
Step-by-step 16 ...

Git Shell tips 17 ..
Switching branches 18 ...

New SetList 19 ..
Description 19 ..
Where can I get it? 19 ..

Releases 20 ..
New Features 20 ..

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

Automatic Mulligans 20 ..
Feedback via Variables 20 ..
Analog Inputs as Shared Variables 21 ..

Bugs & Feature Request 21 ...
UI tips 21 ..
For Programmers 21 ..
Export SetList namespace 22 ..

LuaVIEW in SetList 23 ..
Packed library 23 ...
LuaEvaluatorAPI 23 ..

Init code 25 ..
Deprecated Feedback Interface 30 ...

Variables 30 ...
TCP Settings 30 ..
Protocol 30 ...

Mulligans 32 ...
TCP Settings 32 ..
Protocol 32 ...

Example Clients 33 ..
Why TCP? 33 ..

SetList Preferences 34 ...
Adding a Preference 34 ..
Using Preferences 34 ...
Removing a Preference 34 ...
XML Preferences Format 35 ...

Example Preferences file 35 ...
Program only changes 39 ..

Novatech 39 ...
PulseBlaster 41 ..

Trigger Polarity 41 ...
LuaEvaluatorAPI.lvlibp 43 ..
SetList FAQs 44 ...

How are Ramps constructed? 44 ...
SetList Structure 46 ...

Project Explorer 46 ...
Block Diagram 46 ...
Device Classes 46 ..
UI Column Classes 47 ...
Hardware Programming 48 ..
Variable Manager 48 ..
SetList-Level Preferences 48 ..

UI Tips for SetList 49 ...
Selecting cells 49 ...

2016/07/05 14:16 1/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

Adding a New Device

There are two parts to adding a new device:

Write device methods.1.
Set-up UI for your devices columns in the SetList Table.2.

First, you'll have to provide methods which instruct the program how to interact with your device. It is
likely another device is similar, and you can inherit many methods, only overwriting those that you need
to tweak.

This documentation should be fleshed out as the first groups actually work through this process.

Adding a new .lvclass

Your new device will be another .lvclass which must inherit from Device.lvclass.1) While you can play
around with your local copy and revert it to recover the master branch, you'll want to first make a
new branch on the GitHub (email Neal Pistenti, Zach Smith or Daniel Barker to be a
collaborator on SetList) with a descriptive name like add-<NewDev>. After switching to your new
branch, open SetList.lvproj.

Create a folder on disk for your new device at codes/DeviceVIs/<NewDev> (To find the disk location
of this directory go to the Files tab in SetList.lvproj, right click the DeviceVIs folder, and select
Explore from the dropdown). This will automatically be created in the project explorer based on the
path where you save your new device on disk. To create the class, right-click the DeviceVIs/<NewDev>
folder, select New > Class and name it. Then, right click <NewDev>.lvclass and select Properties. Go
to the Inheritance page and select the appropriate parent object (using Change Inheritance… button).
This could be Device.lvclass if no similar objects exist, MasterDevice.lvclass for a PulseBlaster
replacement, or even PulseBlaster.lvclass if you want to tweak the methods like
PulseBlaster/LoadHardware.vi while inheriting the HWI preparation. If you need to ADD any data
fields, open <NewDev>.ctl and add controls, keeping in mind that you already have all the controls for
EACH ancestor up the chain. Finally, save your new class in the <NewDev> folder on disk.

It is often convenient to add access methods for any new data fields that you add to the class. To
organize this methods, add a Virtual Folder to the new device by right clicking <NewDev>.lvclass and
selecting New > Virtual Folder. The convention is to name this Virtual Folder Accessors. Next, right click
<NewDev>.lvclass and select New > VI for Data Member Access. In the dialog, use the radio buttons
to create a dynamic accessor, check the box labelled Make available through Property Nodes, and select
the Virtual Folder that you just created from the drop down menu under Advanced Options. The dialog
also shows all data members of <NewDev>.lvclass, which can be selected by clicking. For each
member, create a Read and a Write method by selecting the appropriate option from the Access drop
down menu and then clicking the Create button.

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

Programming for your <NewDev>.lvclass

Your first task is to provide the necessary methods for your <NewDev>. Ancestors like Device.lvclass
and MasterDevice.lvclass provide structure for the methods you'll need to program. LabVIEW has
automated method vi creation to save some repetitive tasks. Begin by right-clicking <NewDev>.lvclass
and select New > VI for override….2) Any item with an * MUST be overridden while the others are
optional.3) In this way, the generic parent classes determine what sorts of things your object must do.
When in doubt, look at another device to see what each method is doing.

Any method added as VI for override… will initially contain a “parent call method.” If you want to
completely override the parent method, delete it and write your code in it's place (typically within case
structure for handling error in); You can also choose to run the parent call method in addition to your
code. Note that many of the methods of Device.lvclass are blank, so you'll need to look at other child
devices to see what needs to be done.

I suggest going down to the “Configure Table Appearance” section before returning here (— Daniel
Schaeder Barker 2015/12/31 11:31).

The following is a generic description of what each forced override VI needs to do. Some of the following
VIs also have mouse over context help, which can be seen by pressing Ctrl-H.

Note: Master device ramp and triggering information is passed in reverse time order.

1. ParseSWI.vi - This VI gets the columns of the SetList table associated with the device (the SoftWare
Image) and converts the information into a form that allows programming of the device. This means
evaluating variable and user-defined function calls as well as correctly generating any ramps for the
device.

2. RequestTrig.vi - This VI takes the output from ParseSWI.vi and identifies changes in the device
output that require a trigger from the master device.

3. Prune.vi - Double checks the parsed data from ParseSWI.vi and trigger information from
RequestTrig.vi. The purpose of this VI is to remove lines from the parsed SWI data when no trigger is
required for that line (i.e. remove duplicate lines so that they don't propagate to the HardWare Image).

4. BuildHWI.vi - This VI takes the output of Prune.vi, the pruned parsed SWI data, and converts it to
a time-ordered list that can be used to program the physical device.

5. ErrorCheckHWI.vi - This VI looks at the HardWare Image for the device created by BuildHWI.vi
to confirm that there are no errors. That is to say, the HWI from BuildHWI.vi is a valid and
programmable HWI for the physical device.

6. Load Hardware.vi - This VI is called by CycleX before the experimental cycle executes. It checks
the last HWI programmed to the device against the HWI requested for the current cycle and reprograms
the device if the two HWIs do not match.

7. CollectData.vi - CycleX calls this VI after every cycle and before Clear Hardware.vi. It is used

mailto:dbarker2@umd.edu
mailto:dbarker2@umd.edu

2016/07/05 14:16 3/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

to pull and distribute any data a device may collect. Hence, it is empty for many devices. One example
implementation may be found in NI Card.lvclass

8. Clear Hardware.vi - CycleX calls this VI after every cycle to clean up the hardware in preparation
for the next cycle. For example, Load Hardware.vi often expects to open connections to serial
devices, so Clear Hardware.vi must close these connections to avoid errors on the next cycle.

Additional note: Many “legacy” devices, such as NI cards, are programmed differently. They have
ParseSWI.vi and RequestTrig.vi bundled into a single VI, PrepareHWI.vi, and have Prune.vi
and BuildHWI.vi bundled into FinalizeHWI.vi. If necessary, this method can be applied to a new
device as well (simply override PrepareHWI.vi and FinalizeHWI.vi so that they no longer call
ParseSWI.vi,Prune.vi,RequestTrig.vi, or BuildHWI.vi). However, this approach is not
recommended since it reduces clarity and makes programming of future child devices more complicated.

Configuring Table appearance

Column objects determine how a user interacts with your device in the Table. There are a number of
existing classes in codes/ColumnVIs which all inherit from Column.lvclass. Again, you can right-
click any class within the Project Explorer and select Show Class Hierarchy to view the inheritance tree.
After familiarizing yourself with how the different column types are used at Column Types, you may
decide to add a new class (follow the instructions above to create, save, and change inheritance).

There are two VIs that must be programmed for the new device to show up correctly in the table:

1. Init Device.vi - This VI instantiates the columns for the device so that they appear in the SetList
table. It should begin by calling GetUserLayouts.vi and end by calling Set Columns.vi. In between
these two calls define the columns for the device by inserting the appropriate <ColumnType>.lvclass
objects and configuring them by calling ConfigFunc.vi followed by ConfigAppearance.vi.

2. Display Info.vi - This VI pops up the dialog box seen after clicking Edit or Add Device in the
manage devices pane. Currently, the Device.lvclass version of this method does not contain the
required structures for this VI to function as desired. As such, it is strongly recommended that you copy
the full “Error”/“No Error” case structure from another implemented device into the Display Info.vi
method for your device and edit it appropriately. The purpose of this VI is to, first, extract important
device info (e.g. the Serial Port, number of AO channels, Pulseblaster trigger line, etc.) and column
appearance information; second, allow the user to change/configure these settings; third, detect any
changes that were made and update the device data and columns correctly.

The device method Init Device.vi is called by the DevUtil/Add Device.vi and is immediately
followed by the method Manage Device.vi.

Adding your new device

Once you're ready to test and use as part of SetList, you need to make your device show up as an option
under SetList → Manage Devices → Add Device. To do so, place a plain text file named

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

deviceName.txt in the same directory as your lvclass file. The contents of the file should be the display
name of the new device.

For example:

Your new class CoolWidget.lvclass should have a text file deviceName.txt that looks like this:

deviceName.txt

My Cool Widget

and both of these (and all of your supporting vis) should be located in the
codes/DeviceVIs/CoolWidget directory.

1) To view the tree, right-click any class and choose Show Class Hierarchy.
2) This option is greyed out if you haven't set up Inheritance.
3) Hopefully, the first few device programmers will help ensure that all the necessary generic methods are
marked as “override required” to smooth this process. The necessary methods should all be marked now
(— Daniel Schaeder Barker 2015/12/31 11:29).

From:
https://jqi-wiki.physics.umd.edu/d/ - JQI Wiki

Permanent link:
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/addinganewdevice

Last update: 2016/07/05 13:30

https://jqi-wiki.physics.umd.edu/d/_export/code/documentation/software/computercontrol/setlist/addinganewdevice?codeblock=0
mailto:dbarker2@umd.edu
https://jqi-wiki.physics.umd.edu/d/
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/addinganewdevice

2016/07/05 14:16 5/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

Analog Inputs

Some NI cards come with Analog Input functionality. SetList can be configured to use this and report the
data as a shared variable.

Device Configuration

The usual setup for a device applies:

Channel range and configuration must be done in NIMax first.●

All inputs/output for a physical device belong under the same physical device in SetList's device●

manager. For Analog inputs specifically, you must configure:
AI Pause Line: The gate used to control when the device actually samples its inputs❍

AI Sample Rate: A requested4) sample rate, in Hz. Applies to all channels on this device.❍

Analog Input Channels: A separate row for each input channel to be used, including a unique❍

name. Names will be used in generating shared variables, so be both descriptive and concise.
AI Lines will be automatically updated based on the above❍

Name will also be used in generating Shared Variables, so be both descriptive and concise.❍

Shared Variables

Results deploy to network shared variables generated automatically by SetList. These are updated at the
end of each cycle for any AI channels in use.

Naming Scheme

Names are generated programmatically based on the device and channel names in SetList.

The NI PSP URL for a given analog input is: \\<path to control computer>\SetList-<device
name>-AI\<Analog Input Channel Name>(<Analog Input DAQmx Channel Name>)

For example, suppose you have a test device named AITest connected to you computer Testiest-
Ctrl. On it there is an AI DAQmx channel name AI1 that has been named Test Sweep in SetList. Its
scan would be available under the name \\Testiest-Ctrl\SetList-AITest-AI\Test
Sweep(AI1)

Data Format

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

The shared variable is a cluster of 3 elements:

t an array of time point values, in seconds. Gaps due to gating are transparent to the software!●

y an array of input point values, in whatever scaling/volts was configured in NIMax.●

Channel Name the SetList-defined name for the analog input channel.●

Sample Reader

There is a sample AI Reader packaged in codes/DeviceVIs/NI
Card/AnalogInput/AIReader.zip. It demos the bare-minimum interface needed to retrieve Analog
Input variables. It is packed as a ZIP to keep it from interacting with the rest of the SetList project.

4) NI will automatically choose the closest sample rate it can actually achieve. Reported time offsets will
reflect actual sample rate, not the requested one

From:
https://jqi-wiki.physics.umd.edu/d/ - JQI Wiki

Permanent link:
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/analog_inputs

Last update: 2016/07/05 13:17

https://jqi-wiki.physics.umd.edu/d/
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/analog_inputs

2016/07/05 14:16 7/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

Bugs & Feature Requests

With the code now hosted on GitHub, we have access to their issue tracker. We now use that location for
reporting bugs as well as for making feature requests.

Anyone can view the tracker, but you'll need a GitHub account (Sign Up) to open a new issue for any
purpose. You're free to set up an main account for your entire lab, and it helps the coders to know where
issues/bug reports are coming from if they need more input.

There are several levels of issues, Each of these has their own tag you can apply when creating the issue,
so that others will new the level of attention it requires. Please be careful to distinguish between:

Feature Requests

New things that you would like to see added to SetList.

Open Issues in JQIamo/SetList with label feature request
No Issues Found!
View this list on GitHub

Major Bugs

Problems that prevent functional control via SetList. These are “If this doesn't get fixed, I can't use this
program” scale problems.

Open Issues in JQIamo/SetList with label major bug
No Issues Found!
View this list on GitHub

Minor Bugs

annoyances such as missing error checking, UI problems, etc.

Open Issues in JQIamo/SetList with label minor bug
No Issues Found!
View this list on GitHub

https://github.com/JQIamo/SetList/issues?q=is%3Aopen+-label%3A%22feature+request%22+
https://github.com/JQIamo/SetList/labels/feature%20request
https://github.com/join
http://www.github.com/JQIamo/SetList/issues?labels=feature+request
http://www.github.com/JQIamo/SetList/issues?state=open&labels=major+bug
http://www.github.com/JQIamo/SetList/issues?labels=minor+bug

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

From:
https://jqi-wiki.physics.umd.edu/d/ - JQI Wiki

Permanent link:
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/bugs

Last update: 2016/07/05 13:54

https://jqi-wiki.physics.umd.edu/d/
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/bugs

2016/07/05 14:16 9/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

Column Types

Several column types are already available for use in new devices. A couple should be reserved as
Master-Only Columns

Generic Columns

These columns provide the functionality you'll need to implement most devices.

Column

Use for: Analog values that can be variables●

Parent: None (This is the root class for other column types)●

These columns allow any test inside them, and spawn the variable options inside the right-click menu.
They have only background and text colors, with no special color handling for their contents.

DigitalCol

Use for: Digital values that can be variables●

Parent: Column●

These columns are like the Column class with special handling depending on contents. If it contains
either a '0' or '1', a single click toggles to the other value. Their background color changes depending on
the contents: entering '0' uses the off coloring, '1' the on coloring, and any other value the variable
coloring.

SingleValCol

Use for: Analog values that can only be updated once at the beginning of the cycle●

Parent: Column●

This is exactly like the standard Column, except all rows except the first one are unable to be changed.

TriggerCol

Use for: Placeholder for a channel that exists but shouldn't be manipulated from the table●

Parent: Column●

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

This column has entry disabled so the user cannot manipulate it from the table.

MenuCol

Still under development

User for: Letting the user pick only options from a menu●

Parent: Column●

Clicking this column allows the user to pick from a number of pre-defined choices. These choices are
passed to handling functions via Name-Tag string pairs that allow you to set behavior based on what was
chosen.

Master-Only Columns

These columns were implemented specifically for use with processing the Master table, mostly to handle
timing and cycle-building functions

GroupCol

Use for: Configuring grouping at the Master-level●

Parent: DigitalCol●

Implements the group column, and is a special-case of the DigitalCol. It contains extra logic to handle
functions like hiding the whole row for a given group.

ModeCol

Use for: Handling different modes of Master-Object●

Parent: Column●

Contains the various modes the Master device can use. It contains logic to disable modes (for instance,
Ramp inside a Loop-EndLoop pair), force Ramp steps on the first line, etc. etc. For historical reasons it is
left as an independent class instead of folding it in as a subclass of MenuCol.

2016/07/05 14:16 11/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

From:
https://jqi-wiki.physics.umd.edu/d/ - JQI Wiki

Permanent link:
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/columntypes

Last update: 2014/09/03 11:16

https://jqi-wiki.physics.umd.edu/d/
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/columntypes

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

Feedback Overview

Sometimes one desires the ability to change the procedure based on the results of incoming data. This
could be as simple as retaking a single shot, or as complex as manipulating variables to alter a ramp
shape and duration.

To enable this kind of communication, we've built a JSON-based interface to a dynamically chosen TCP
port. The port is looked up by your client via the NI Service Locator. This interface is available since
SetList version v2.0.0 5)

TCP Communications

Getting the Port: NI Service Locator

The NI Service Locator is available at port 3580 on any machine with an active LabView installation.
Visiting the link http://localhost:3580/dumpinfo? takes you to a page listing the services it currently
knows about. When SetList is running, it will create a named service SetList/JSON. The service locator
will be informed and the port number will be available at http://localhost:3580/SetList/JSON on the
computer running SetList. You should be able to access it from another computer by replacing
localhost with the IP address of the computer running SetList.

The response is of the form Port=<port #> which should be easily parse-able by whatever software is
initiating the feedback. This port is static over individual runs of SetList.vi, so it is wise to cache it and
only look it up at startup or when communication fails.

Communication Protocol

Once you have the port number, you can initiate a TCP connection with that port on the SetList
computer. SetList is expecting a JSON object string preceded by its length in binary. That is four bytes
representing the integer number of bytes in the string being sent, followed by the string itself.

When it finishes processing the data you've sent, SetList will send a response (formatted as above) and
then close the connection. If more information needs to be sent, open a new connection to the same
port.

http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/JSON
http://digital.ni.com/public.nsf/allkb/227453F884CE035386256E55007A303D

2016/07/05 14:16 13/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

Expected JSON Contents

General Format

The string is expected to conform to the JSON format specification6).

SetList parses the top level of the JSON object for its members. It assumes each member's name7)8) is a
string matching to some internal command. The value part of the pair is passed to the command as a
string.

If a matching command is not found, SetList will respond with an error and skip that member.

SetList's response is formatted as a JSON object as well, usually containing an array for responses that
are normal and a separate array for errors.

Variable Format

Representing a variable as a JSON object works as follows:9)

{
 "name": <string (required)>,
 "defaultValue": <number>,
 "sequenceFunction": <string>,
 "informIgor": <bool>,
 "sequence": <bool>
}

Where:

All members' names correspond to their function in the SetList Variable manager.●

The “name” member has a required string value.●

All other members may be given the value null (e.g. “informIgor”:null) to indicate the variable●

should retain the previous (or, if creating a new variable, the default) value.

Variable Set

Variables can also be grouped into “Variable Sets” using JSON arrays:10)

[
 <variable 1>,
 <variable 2>,
 ...,
 <variable N>

http://www.json.org/

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

]

Command Formats

Immediately Apply Variables

This command has SetList update the values of the variables right away, regardless of the status of a
running sequence. The format is:

"instantVariables":<variable set>

where <variable set> is a single variable set object as specified above.

Sequence Set Variables

This command has SetList update the values of the variables after the end of the currently-running
sequence. SetList maintains an ordered (FIFO) list of variable sets, and applies the next set at the end of
a sequence just before re-starting the sequence.

The full command JSON is then:11)

"sequenceSets":[
 <variable set 1>,
 <variable set 2>,
 ...,
 <variable set N>
]

Where <variable set i> is a variable set as defined above.

Mulligans

Mulligans have the simplest format:

"mulligan":[<number>,...]

where <number> is the file number of an element you are trying to mulligan.

SetList will only check if the elements of the array are numbers, not if they are in the history (and thus
mulligan-able). It reports the total count of numbers it finds, and sends errors for the non-numbers.

2016/07/05 14:16 15/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

Example Clients

codes→Utils→ExternalFeedback→ExampleClients12) contains subdirectories with simple example
clients for:

Igor●

LabView●

Python●

which should be enough of a starting point to either integrate into your data acquisition package or build
a client in some other language.

Why TCP?

Because TCP libraries exist for many programming languages (Python 3.5, Python 2.7, C++, IGOR,
MatLab)13) in addition to LabView, this allows you to “close the loop” however you wish.

LabView has a built-in TCP Listener which waits for incoming connections on a specified port before
handing the connection off to your program to handle. This allows us to do a low-overhead loop that just
sits and waits for outside data or to be shutdown.

5) Previously we used a custom protocol over fixed TCP ports to do this. It was too clunky given the
existence of standard data exchange formats like JSON, so it has been discontinued. Documentation is
still available on old_feedback.
6) see also JSON
7) The first part of a name:value pair, described in the spec as a string:value pair
8) not to be confused for the value of a member named 'name'
9) , 10) , 11) with optional white space added for legibility
12) or on GitHub
13) These are the results of a quick Google search, no guarantee implied

From:
https://jqi-wiki.physics.umd.edu/d/ - JQI Wiki

Permanent link:
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/feedback

Last update: 2016/07/05 13:47

https://docs.python.org/3/library/socket.html
https://docs.python.org/2/howto/sockets.html
http://stackoverflow.com/questions/118945/best-c-c-network-library
http://www.igorexchange.com/project/SOCKIT
http://www.mathworks.com/products/instrument/supported/tcp-ip.html
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/JSON
https://github.com/JQIamo/SetList/tree/master/codes/Utils/ExternalFeedback/ExampleClients
https://jqi-wiki.physics.umd.edu/d/
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/feedback

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

Getting SetList: help for the uninitiated

If you've made your way to this page, working with a code repository is probably a foreign concept. While
it's not necessary to use GitHub to use the SetList, it is well documented and easy. And for programmers,
it also has some nice bells and whistles.

The https://github.com/JQIamo/SetList repository is the central storage for SetList hosted on GitHub.
Presently the repository is public meaning anyone can download the code; however, only collaborators
may make changes.

Having a central repository means that individual labs can

Share code●

keep up with code improvements from other labs●

track issues and collect feature requests in one place●

Step-by-step

Note: I thought when I started this that GitHub for Windows would be easiest, however tags
do not show up!

With that in mind, here are very specific instructions about getting SetList from our GitHub repository:14)

Download and install GitHub for Windows client. Check out the “help tab” at the top!1.
Sign up for lab account at https://github.com. While not expressly required, it will give you a way to2.
start versioning other things in the lab. Also, GitHub is extremely generous with free private
repositories for educational use; go ahead and request a discount.
Navigate to the repository at https://github.com/JQIamo/SetList and sign in to your (lab's) account.3.
Click “Clone in Desktop” on the right sidebar. The standard location is Documents/GitHub but you can4.
choose whatever you like in the resulting popup.
You now get to choose by always having the latest-and-greatest “beta” version (master branch) or5.
working of a stable tag.

In GitHub for Windows, ensure that SetList is selected on the left:1.

https://github.com/JQIamo/SetList
https://github.com/JQIamo/SetList/issues
https://github.com/JQIamo/SetList/labels/feature%20request
https://windows.github.com/
https://github.com
https://education.github.com/
https://github.com/JQIamo/SetList

2016/07/05 14:16 17/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

The pull down menu likely says master; here you can choose between development branches.2.
In order to use the stable tag, you'll need to use the command line.3.

As shown above, click the settings gear at the top right and choose “Open in Git Shell.”1.
The command line will show you the path to the SetList repository as well as your current2.
branch.
Type git tag to see the available tag names.3.
switch to the latest tag by typing git checkout <version> where <version>=v1.2.0, e.g.4.

GitHub for Windows will always show you the branch you are using. The neat thing is when you switch6.
(checkout something else) it leaves all unchanged files in place and only adds/removes/overwrites
what is different. Note: when you checkout a “tag” GitHub for Windows will say “DETACHED
HEAD: <SHA hash #>.” This is normal and points to the commit from which the tag was
generated.
Finally, please don't be discouraged by the load time the first time you open SetList.lvproj. In order to7.
make LabVIEW more compatible with the repository, the code will be compiled locally ONCE. Every
subsequent load should be much faster!

Git Shell tips

If you checkout a different branch with GitHub for Windows while the Git Shell is open, you can press●

enter to update the displayed branch on the command line.
To close the shell, simply type exit.●

https://jqi-wiki.physics.umd.edu/d/_detail/documentation/software/computercontrol/setlist/getsetlist/gitshell.png?id=documentation%3Asoftware%3Acomputercontrol%3Asetlist%3Agetsetlist

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

Switching branches

To switch branches, following the above instructions starting from below the screenshot. Remember,
you'll need to use the command line to checkout a new tag. Also, you can browse the tags at
https://github.com/JQIamo/SetList/releases.

Your lab might be very happy simply using master so you always have the latest and greatest additions.
However, periodically, you'll want to start GitHub for Windows and look at the top right corner next to
Sync. If there are new changes on the central repository, you can pull them down by clicking Sync. There
is no need to sync with a tag because it is static by definition.

14) Of course, there are many other ways to accomplish the same as described at where_can_i_get_it

From:
https://jqi-wiki.physics.umd.edu/d/ - JQI Wiki

Permanent link:
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/getsetlist

Last update: 2014/10/08 17:33

https://github.com/JQIamo/SetList/releases
https://jqi-wiki.physics.umd.edu/d/
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/getsetlist

2016/07/05 14:16 19/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

New SetList

See SetListFAQs for frequently asked questions about how the SetList behaves. Many of the pages linked
herein need more content. If you've found your way here, please take the time to add helpful
tips/tricks/hints for the benefits of others!

Description

This documentation is under development as we roll out the new SetList. Please be an active wiki user
and augment/edit it as you see fit!

The underpinnings of the old group CycleX LabVIEW program have been rewritten using object-oriented
LabVIEW. In the new structure, the SetList has been streamlined into a single table with customizable
views. Implementation of hardware programming is now device agnostic and relies on device classes to
provide methods for translating the SetList to device-readable instructions. Previously, to add a new type
of hardware device to the old CycleX, one had to re-program the guts; now a new device can easily be
added to SetList by programming a set of prescribed methods.

It is my sincere hope that the new device flexibility will enable a single version to be used
throughout the laser cooling and trapping labs at JQI instead of the frequent, lab-wise
branching that has been typical. To that end, we are setting up a group-wide code repository. See
the next section (Where can I get it?) for more. If you find yourself needing new functionality, please talk
to one of the collaborators on the SetList code repository about how it can be achieved without a
permanent fork for your lab!

For a detailed description of the group approach to experimental timing and control, see Approach.

Where can I get it?

Please note: For acceptable graphical (UI) performance, we need to use LabVIEW 201315) (32-
bit to work with present PulseBlaster API). Prior versions of LV took many ms for each table cell coloring
operation! LabVIEW 2013 can be downloaded through the UMD site license (Terpware) or the NIST site
license.

The SetList and LuaEvaluator are now hosted on the JQIamo organizational repository on GitHub.
Presently, the repository is public. Email Neal Pisenti or Zach Smith (zsmith12@umd.edu) with your
GitHub username if you'd like to become a code contributor, and they will add you as collaborator.

Anyone can clone the repositories (SetList and LuaEvaluator) to get started using SetList in their lab. It's
probably easiest to set-up a GitHub account and download their Windows client (although command-line
is there if you'd prefer). Alternately, you can use the remote URL and your preferred Git or even

https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/cyclex
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/home#approach
http://terpware.umd.edu
https://github.com/JQIamo/SetList
https://github.com/JQIamo/LuaEvaluator
mailto:zsmith12@umd.edu
https://help.github.com/articles/which-remote-url-should-i-use

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

Subversion client.

If you've gotten this far and have no idea what the last paragraphs mean, see these step-by-step
instructions.

Releases

If you will only be using but not modifying SetList, and you'd rather stay at a fixed point on the revision
history, we've set up a system for making & numbering releases, and you can always find the latest
release at https://github.com/JQIamo/SetList/releases/latest. The description for each release should list
the changes since the last release so you can tell what you are getting. The version numbers also carry
meaning, the should be parse as vMajor.Minor.Revision, where:

Major is incremented only when we make not-backwards compatible changes (hopefully never)●

Minor is incremented for major features, e.g. a new Device is added, a new Column class is added, etc.●

Revision is for sets of bug fixes between minor releases. To keep from clogging the pipeline with a lot●

of releases, these will be bundled together at most once a week.

New Features

There are many new features which improve the functionality, flexibility, and usability of SetList. Below is
a summary of the most requested:

copy/paste: by block or row●

undo/redo●

grouping: Variably enable/disable sets of lines●

functional variable sequencing: No longer are you limited to linear ramps●

…●

Also, check out UI tips for hints, tips, and tricks.

Automatic Mulligans

SetList now allows other programs to request mulligans over a TCP connection as specified at Mulligans.
This effectively enables your imaging computer to automatically request a retake of a shot during a
sequence.

Feedback via Variables

Also available is the ability to have an external program change the values/configuration of variables
over a (different) TCP connection, as described in Variables. This opens up opportunities for automatic

https://github.com/JQIamo/SetList/releases
https://github.com/JQIamo/SetList/releases/latest

2016/07/05 14:16 21/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

optimization of parameters or adaptive sampling routines based on the results of your shots.

Analog Inputs as Shared Variables

Since v2.0.0, SetList has supported exporting Analog Inputs from NI Cards as shared variables, where
they are available to the acquisition computer. Variables are automatically named based on device and
channel names. See Analog Inputs

Bugs & Feature Request

With the code now hosted on GitHub, we have access to their issue tracker. More information is available
on Bugs & Feature Requests

UI tips

Much of the new user interface features are in right-click “context” menus. These change with column,
row/column header, etc. Hopefully, most things are intuitive, but if something takes you a while to figure
out, please document it at UI tips.

For Programmers

While you can always dig into the block diagram to look at the (well-?)commented code, here's an
introduction to the Structure. But if we did our job, there should be no reason to touch most of the
underpinnings.

To add a new device you will need to provide (1) methods for your device and (2) initialization of your
device appearance in table columns. For more details, see Adding A New Device.

In addition, a label specifically to point out potential pitfalls has been added to the issue tracker:

All Issues in JQIamo/SetList with label programmer warnings

#94: Slow Table Performance Fix may need to be re-applied in the future. programmer warnings●

Reported by: ZJ on 2016/04/29 12:58
#55: Update git remote programmer warnings Reported by: CHerold on 2014/09/19 08:44●

#53: It is possible to program infinite recursion when disabling other columns programmer warnings●

wontfix Reported by: ZJ on 2014/09/16 13:50
#51: PreviewCell for digitals minor bug programmer warnings Reported by: CHerold on 2014/09/16●

09:27

View this list on GitHub

https://github.com/JQIamo/SetList/issues/94
https://github.com/JQIamo/SetList/issues/55
https://github.com/JQIamo/SetList/issues/53
https://github.com/JQIamo/SetList/issues/51
http://www.github.com/JQIamo/SetList/issues?state=all&labels=programmer+warnings

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

Export SetList namespace

Export SetList Documentation as PDF

15) see also repacking_lua for more about using future versions

From:
https://jqi-wiki.physics.umd.edu/d/ - JQI Wiki

Permanent link:
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

Last update: 2016/07/05 13:56

https://jqi-wiki.physics.umd.edu/d/
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

2016/07/05 14:16 23/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

LuaVIEW in SetList

String expression parsing has been done in the group control software with LuaVIEW for nearly 10 years.
It is a port of the scripting language lua for LabVIEW, however it appears to have ceased active
development around 2009. Lately, we've been kicking around alternate languages, e.g. Python, however
existing LabVIEW pluggability is reportedly pretty slow.

Here, the minimal use of LuaVIEW in the new SetList is described.

Packed library

The LuaVIEW distribution is pretty large and in order to minimize what needs to be loaded and to make it
easier for end users, we placed what is needed into a LabVIEW packed library
(SetList/codes/PackedLibraries/LuaEvaluatorAPI.lvlibp). As a result, there is no need to install LuaVIEW on
each end-user machine.

Packed libraries only work in the LabVIEW version for which they were built (2013 in this case); see
instructions on repacking Lua for another version.

LuaEvaluatorAPI

Historically, two separate VIs were called, both of which are modified from LuaVIEW methods:
Caching_Expression_Evaluator_v4.vi and Caching_Expression_Evaluator_Table.vi. They are configured for
non-parallel operation so that only one instance is ever called. Furthermore, they only run their init code
(which creates a Lua state) ONCE EACH, after which they continue to act on the same state until it is
stopped.

However, by calling two separate functions (with nearly duplicate functionality) TWO Lua states were
being initialized! As a result, we couldn't take advantage of the fact that variables and functions are
cached (since the two states don't talk to each other) and they were being reset every single time a cell
needed evaluation. Speed improvements are significant (better than 4x faster) by removing
unnecessary variable and function setting by only using one Lua state.

The full initialization code is below and highlights how the _Table version incorporates step size and total
delay time into IBS's function evaltable. As this is the only addition, the full function is also shown after
he block diagram image:

http://luaview.esi-cit.com/
http://www.lua.org
https://jqi-wiki.physics.umd.edu/d/_detail/documentation/software/computercontrol/setlist/luainit.jpg?id=documentation%3Asoftware%3Acomputercontrol%3Asetlist%3Aluaview

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

-- New code from IBS
function evaltable(expression,steps,TimeStep)
 -- evaluate an expression and return its value
 local func=_expression_cache[expression]
 if (not func) then
 -- expression not parsed and cached
 _check_and_cache(expression)
 func=_expression_cache[expression]
 end
 -- expression is now parsed and cached
 -- now make the desired tabular evaluation

 local i;
 local StepsSafe;
 answer={}

 dt = TimeStep;
 tMax = (steps+1)*dt;
 StepsSafe = max(steps,1);
 for i=0,steps do
 f = i/StepsSafe;
 t = i*dt;
 answer[i+1] = func()
 end
 return answer

2016/07/05 14:16 25/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

end

Init code

While much of what is below was written for LuaVIEW, there are a few new pieces. One is marked – New
code from IBS and defines the function evaltable. In addition, the variables f, t, tMax, and dt are
pre-defined with value 0 (unnecessarily?) at the bottom.

function set(variable,value)
 -- set a variable to a value
 _G[variable]=value
end

function get(variable)
 -- get the value of a variable
 return _G[variable]
end

function _check_and_cache(expression)
 -- check an expression, if OK cache it and return its evaluation
 if (expression=="") then
 _error("empty expression string")
 end
 local func,err = _loadstring("return "..expression)
 if (not func) then _error(err) end
 if 1~=_table_getn({func()}) then

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

 _error("expression \""..expression.."\" must evaluate to a single
value. Commas are not allowed.")
 end
 local result=func()
 if _type(result)~="number" then
 _error("expression \""..expression.."\" does not evaluate to a
number")
 end
 _expression_cache[expression]=func
 return result
end

function eval(expression)
 -- evaluate an expression and return its value
 local func=_expression_cache[expression]
 if (func) then
 -- expression already parsed and cached
 return func()
 end
 return _check_and_cache(expression)
end

-- New code from IBS
function evaltable(expression,steps,TimeStep)
 -- evaluate an expression and return its value
 local func=_expression_cache[expression]
 if (not func) then
 -- expression not parsed and cached
 _check_and_cache(expression)
 func=_expression_cache[expression]
 end
 -- expression is now parsed and cached
 -- now make the desired tabular evaluation

 local i;
 local StepsSafe;
 answer={}

 dt = TimeStep;
 tMax = (steps+1)*dt;
 StepsSafe = max(steps,1);
 for i=0,steps do
 f = i/StepsSafe;
 t = i*dt;
 answer[i+1] = func()
 end

2016/07/05 14:16 27/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

 return answer
end

function assign(variable,expression)
 -- evaluate an expression and assign it to a variable
 local func=_expression_cache[expression]
 if (func) then
 -- expression already parsed and cached
 _G[variable]=func()
 return
 end
 _G[variable]=_check_and_cache(expression)
end

function execute(statements)
 -- execute statements, e.g. setting initial variable values
 -- or defining custom functions
 local func,err=_loadstring(statements)
 if (not func) then
 _error(err)
 end
 func()
end

function isvalid(variable)
 -- check if a variable name is valid for assignment
 if _name_reserved[variable] then
 _error("\""..variable.."\" is not a valid variable name: it is
reserved for a predefined ".._type(_G[variable]))
 end
 if _string_find(variable,"[^_%w]") then
 _error("\""..variable.."\" is not a valid variable name: only
underscores and alphanumerical characters are allowed.")
 end
 if (not _loadstring("return {"..variable.."=42}")) then
 _error("\""..variable.."\" is not a valid variable name: leading
digits and Lua reserved names are prohibited.")
 end
end

--start with an empty expression cache
_expression_cache={}

-- hide functions and tables that do not belong in expressions
_error=error
_type=type

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

_table_getn=table.getn
_string_find=string.find
_loadstring=loadstring
retain={
retain=true,
set=true,
get=true,
eval=true,
evaltable=true,
assign=true,
execute=true,
isvalid=true,
string=true,
math=true,
}
for k,v in pairs(lv) do
 if (string.find(k,"I8") or string.find(k,"U8") or string.find(k,"I16") or
string.find(k,"U16") or string.find(k,"I32") or string.find(k,"U32")) then
 _G[k]=v
 retain[k]=true
 end
end
_name_reserved={}
for k,v in pairs(_G) do
 if _type(k)=="string" and not (retain[k] or math[k] or
string.sub(k,1,1)=="_") then
 _G[k]=nil
 else
 _name_reserved[k]=true
 end
end
math=nil
_name_reserved.math=nil
retain=nil
_name_reserved.retain=nil
string=nil
_name_reserved.string=nil

f=0
t=0
tMax = 0
dt = 0

2016/07/05 14:16 29/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

From:
https://jqi-wiki.physics.umd.edu/d/ - JQI Wiki

Permanent link:
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/luaview

Last update: 2014/08/01 14:12

https://jqi-wiki.physics.umd.edu/d/
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/luaview

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

Deprecated Feedback Interface

 This feedback interface is deprecated as of v2.0.016). For up-to-date documentation, please see
Feedback.

Variables

Sometimes one desires the ability to change the procedure based on the results of incoming data. This
could be used for anything from autotuning AOM frequencies to adaptive sampling during a data-
gathering run. To allow these kinds of activities to happen in an automated way, we've implemented a
way to communicate new values for variables over a standard TCP connection.

Once a connection is made, it expects to receive a Big Endian 32-bit signed integer (Labview type I32)
giving it a command, followed by some number of bytes of data (set by the command). Depending on the
data received, it will send back a two-character ASCII response, followed by an I32.

The commands allow you to build a set of variable names and values that SetList will store in a queue,
applying those sets to the next cycle to run.

TCP Settings

SetList is setup to listen on port #55928 which is in the IANA range of private ports and thus should
always be available.

The IP address will be whatever the local IP is of the machine is running SetList.

SetList will expect the other party to close the TCP port when it is done17), if you do not do this the
feedback system may hang for quite a while waiting for a response. Issuing a Close Connection command
will signal SetList to stop listening for data, but it still expects the client to close the TCP on its own.

Protocol

The commands section details the command codes and data format SetList will expect, and the
Responses section details the possible response codes and their meaning.

Commands

http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Endianness
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

2016/07/05 14:16 31/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

This is the list of command integers you can send over the TCP connection to SetList.

Code Command Data Field18) Description
Control Commands

OK OK? No Data
Response is either “OK” or “ER” followed by an I32
representing the number of errors since the last OK?
check.

QU QUiet No Data
Stop responses from SetList, except for “OK?”. Will still
send “OK” to confirm that “QU” was processed
successfully.

LD LouD No Data Turns off “QU”, response as in “OK?”.
Set Commands

SS Start Set I32 # in Set
Marks the beginning of a variable set, and lets SetList
know how many variables to expect. If called without
ending the previous set, it is dropped silently.

CS Cancel Set No Data Drops whatever set is currently in progress.

EN End Now No Data

Ends the current variable set. If the total number of
variables matches what was given by SS, SetList will
immediately execute the changes laid out in the
variable set. If not, will report either EE or ME and drop
the set.

ES End After
Sequence No Data

As in EN, but instead of applying the changes
immediately will wait until the end of the currently
running sequence to do so. Sets closed with ES are
added to a queue, so you can do this many times.

NN Next Now I32 # in Next Set As in EN, but immediately start a new set as in SS.

NS Next After
Sequence I32 # in Next Set As in ES, but immediately start a new set as in SS.

SZ SiZe No Data Asks SetList how many variables it is currently aware of.
See the SZ response.

Variable Commands

DV Set Double
Variable

Byte Change Flags
Sets parameters for the named variable, masked by the
Change Flags byte as described below. The “String
Value” section currently will have no effect on SetList,
as this functionality does not exist.

String19) Variable Name
DBL Default Value

String Sequence
Function

SV Set String
Variable

Byte Change Flags Not Supported by SetList Sets parameters for the
named variable, masked by the Change Flags byte as
described below. The “String Value” section currently
will have no effect on SetList, as this functionality does
not exist.

String Variable Name
String Default Value

String Sequence
Function

The Change Flag is a single byte whose bits are encoded as bF X I S CI CS CD CSF

Responses

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

Each response code indicates the action taken by SetList in response to the command. It also includes
data to help debug any problems that occurred.

Code20) Data Field 21) Meaning Action Taken

OK Echo of received
command code OK Commanded action

ER Number of errors since
last “OK?” ERror(s) No action requested

TO Echo of received
command code

Timed Out waiting for the rest of the
command

Closes TCP connection after a
short wait

NC Always 0 No Command: Timed out waiting for
the next command

Closes TCP connection after a
short wait

BC Echo of received
command code

Bad Command: Received an unknown
command code Ignore last command

NS Echo of received
command code

Not Supported: Command code for an
unimplemented command

Last command was read in as
specified, but will not be
processed downstream.

ME Number of elements
received

Missing Element: Received fewer total
variables than told to expect Drops last variable set

EE Number of elements
received

Extra Element: Received more total
variables than told to expect Drops last variable set

SZ Number of variable
received SiZe: Size of current variable set. No action, response to SZ

command

Mulligans

If your data processing has the ability to detect a bad shot, you may desire the ability to automatically
inform SetList to retake that point.

TCP Settings

Mullgians are setup to listen on port #50291 which is in the IANA range of private ports and thus should
always be available.

The IP address will be whatever the local IP is of the machine is running SetList. SetList will expect the
other party to close the TCP port when it is done.

Protocol

The protocol for the Mulligans mechanism is simple: Once the connection is opened, SetList opens for
Big-Endian I32 values, echoing them back as it receives them, until the connection is closed. Once the
connection closes it goes back to listening for a new connection at the designated port.

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

2016/07/05 14:16 33/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

Example Clients

codes→Utils→ExternalFeedback→ExampleClients contains subdirectories with simple example
clients for:

Igor●

LabView●

Python●

which should be enough of a starting point to either integrate into your data acquisition package or build
a client in some other language.

Why TCP?

Because TCP libraries exist for many programming languages (Python 3.5, Python 2.7, C++, IGOR,
MatLab)22) in addition to LabView, this allows you to “close the loop” however you wish.

LabView has a built-in TCP Listener which waits for incoming connections on a specified port before
handing the connection off to your program to handle. This allows us to do a low-overhead loop that just
sits and waits for outside data or to be shutdown.

16) specifically since commit 3507fb0
17) Except for when it issues a “TO” or “NC” response, see the Protocol section
18) All types are to be communicated in Big-Endian form
19) Encoded as an I32 giving string length followed by ASCII characters
20) Always a 2-character ASCII string
21) Always a Big-endian I32
22) These are the results of a quick Google search, no guarantee implied

From:
https://jqi-wiki.physics.umd.edu/d/ - JQI Wiki

Permanent link:
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/old_feedback

Last update: 2016/07/05 13:46

https://docs.python.org/3/library/socket.html
https://docs.python.org/2/howto/sockets.html
http://stackoverflow.com/questions/118945/best-c-c-network-library
http://www.igorexchange.com/project/SOCKIT
http://www.mathworks.com/products/instrument/supported/tcp-ip.html
https://github.com/JQIamo/SetList/commit/3507fb0dcf51a70b123e8674e83cbc8cb51626c1
https://jqi-wiki.physics.umd.edu/d/
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/old_feedback

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

SetList Preferences

Adding a Preference

Add new preference data to SetListPrefs→PrefCluster.ctl. If your preference will require only1.
one piece of data, add that, otherwise add a cluster for all the data related to that function. Name the
data/cluster something descriptive in CamelCase.
Add a short description to the data/cluster in the “Description and tooltip” right-click menu.2.
Set the defaults for the preference in SetListPrefs.lvclass's private data using the using “Use3.
current values as default” methodology.
Add read/write accessors to the class to use in the main program. For organization, create a sub-4.
virtual-folder to group just the accessors for that particular preference.
Add whatever front panel interface you'll want to the “Preferences” tab of SetList.vi5.
Doing the above will cascade a bunch of TypeDef changes withing the SetListPrefs class, so make6.
sure to save all the modified files before committing/pushing the result.

Once you've finished adding your preference, you'll want to:

Using Preferences

There is a global class in Globals→PrefsGlobal that holds the current preferences in memory while
SetList is running. You can use this to read/write values whenever you like, with one important exception:

 When the program first starts, it need to initialize the preferences before you can use their stored
values. To facilitate this process, there are two VIs provided:

GetPrefsAfterInitDone.vi waits for initialization to finish, then returns the now initialized global●

preferences on its output.
WaitForInitDone.vi is pass-through for the Preferences terminals, but still waits for the init signal●

before it finishes execution. You can use the error out line on this to hold execution of other VIs.

 Warning: we are not guarded against race conditions when accessing the global. Be careful about
when you are choosing to write data.

Preferences are only saved to file when the quit button is pressed.

Removing a Preference

http://en.wikipedia.org/wiki/CamelCase
http://en.wikipedia.org/wiki/CamelCase

2016/07/05 14:16 35/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

Copy the preference name into a new entry of the “KnownOldPrefs” string array in1.
SetListPref.lvclass's private data.
Delete corresponding accessor(s) from SetListPref.lvclass, if present.2.
Clean whatever configuration interface exists off of the preferences tab.3.
Delete the corresponding cluster from SetListPrefs→PrefCluster.ctl4.
Doing the above will cascade a bunch of TypeDef changes withing the SetListPrefs class, so make5.
sure to save all the modified files before committing/pushing the result.

XML Preferences Format

The Preference class handles reading and writing the XML file for you, so you should never need to edit it
manually. Nevertheless, an effort has been made to make it human-readable. On load the file is checked
against a schema to ensure it is properly formatted, and an error will be reported if it is not.

The XML schema used to validate the preference file is included with SetList, but for completeness we'll
outline the structure of the file.

The root-level tag is <SetListPrefs>, and it has several attributes to setup how the XML Parser will
interact with it. For the actual preferences it contains elements (in order):

<DocLoc>: Locations of documentation for the file format●

<WikiURL>: A link to this page, the location of format definition on the wiki❍

<LocalCopy>: A link to a local markdown file containing the same documentation❍

<ActivePrefSet>: The <Name> of the currently active PrefSet. Must match the <Name> of one of the●

PrefSets.
One or more of <PrefSet>: The actual stored preferences.●

<Name>: The name of this preference set. Should be in CamelCase. (this is what is referenced by❍

<ActivePrefSet>)
Zero or more of <PrefItem>: Individual elements of the Preferences cluster in LabView❍

<Name>: The name of this item, pulled from LabView's label. Should be in CamelCase.■

<Description>: The description of this item, pulled from LabView's description.■

<ModTimestamp>: The last time this particular item was saved to file. Given as in ISO-8601■

form.
<PrefKnown>: One of:■

Current meaning this was a preference item in-use at time of saving●

Old meaning this item is not is use, but a known former preference item●

Unknown meaning this item is neither in use nor a known old item●

<LVData> contains the XML form of the preference item's value generated by LabView■

Example Preferences file

For reference, here is a properly formatted preferences file. It was in active use when pulled.

exampleSetListPrefs.xml

http://en.wikipedia.org/wiki/CamelCase
http://en.wikipedia.org/wiki/CamelCase
http://en.wikipedia.org/wiki/CamelCase
http://en.wikipedia.org/wiki/CamelCase
http://en.wikipedia.org/wiki/ISO_8601#Combined_date_and_time_representations
http://en.wikipedia.org/wiki/ISO_8601#Combined_date_and_time_representations
https://jqi-wiki.physics.umd.edu/d/_export/code/documentation/software/computercontrol/setlist/preferences?codeblock=0

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

<?xml version="1.0"?>
<SetListPrefs xmlns:jqisetlist="https://jqi-
wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home
"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="https://jqi-
wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home
setListPrefs.xsd"
xmlns="https://jqi-
wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home
">
 <DocLoc>
 <WikiURL>https://jqi-
wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/pref
erences</WikiURL>
 <LocalCopy>./XMLWikiPage.md</LocalCopy>
 </DocLoc>
 <ActivePrefSet>Default</ActivePrefSet>
 <PrefSet>
 <Name>Default</Name>
 <PrefItem>
 <Name>StartupWindowPosition</Name>
 <Description>Sets a standard position for the main SetList
window to snap to, and whether or not this should happen automatically at
startup.</Description>
 <ModTimestamp>2014-10-03T13:14:28-04:00</ModTimestamp>
 <PrefKnown>Current</PrefKnown>
 <LVData>
 <LvVariant>
 <Name>Value</Name>
 <Cluster>
 <Name>StartupWindowPosition</Name>
 <NumElts>2</NumElts>
 <Cluster>
 <Name>WindowBounds</Name>
 <NumElts>4</NumElts>
 <I16>
 <Name>Left</Name>
 <Val>110</Val>
 </I16>
 <I16>
 <Name>Top</Name>
 <Val>117</Val>
 </I16>
 <I16>
 <Name>Right</Name>

2016/07/05 14:16 37/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

 <Val>1362</Val>
 </I16>
 <I16>
 <Name>Bottom</Name>
 <Val>886</Val>
 </I16>
 </Cluster>
 <Boolean>
 <Name>ResetPositionAtStartup</Name>
 <Val>1</Val>
 </Boolean>
 </Cluster>
 </LvVariant>
 </LVData>
 </PrefItem>
 <PrefItem>
 <Name>HiddenDevices</Name>
 <Description>Holds the names of devices that shouldn't show up
in the Add Devices menu.</Description>
 <ModTimestamp>2014-10-02T20:25:16-04:00</ModTimestamp>
 <PrefKnown>Current</PrefKnown>
 <LVData>
 <LvVariant>
 <Name>Value</Name>
 <Array>
 <Name>HiddenDevices</Name>
 <Dimsize>4</Dimsize>
 <String>
 <Name>String</Name>
 <Val>DDS</Val>
 </String>
 <String>
 <Name>String</Name>
 <Val>Novatech</Val>
 </String>
 <String>
 <Name>String</Name>
 <Val>PTS via PB</Val>
 </String>
 <String>
 <Name>String</Name>
 <Val>SRS DS345</Val>
 </String>
 </Array>
 </LvVariant>
 </LVData>
 </PrefItem>

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

 <PrefItem>
 <Name>AutoPressHWUpdate</Name>
 <Description>Sets whether the user must press the 'Update HWI'
button or if any table changes are automatically processed.</Description>
 <ModTimestamp>2014-10-02T20:25:16-04:00</ModTimestamp>
 <PrefKnown>Current</PrefKnown>
 <LVData>
 <LvVariant>
 <Name>Value</Name>
 <Boolean>
 <Name>AutoPressHWUpdate</Name>
 <Val>0</Val>
 </Boolean>
 </LvVariant>
 </LVData>
 </PrefItem>
 <PrefItem>
 <Name>DetachVMUIonStart</Name>
 <Description>Sets whether the variable manager starts out in
the subpanel of popped-out.</Description>
 <ModTimestamp>2014-10-03T13:14:38-04:00</ModTimestamp>
 <PrefKnown>Current</PrefKnown>
 <LVData>
 <LvVariant>
 <Name>Value</Name>
 <Boolean>
 <Name>DetachVMUIonStart</Name>
 <Val>0</Val>
 </Boolean>
 </LvVariant>
 </LVData>
 </PrefItem>
 </PrefSet>
</SetListPrefs>

From:
https://jqi-wiki.physics.umd.edu/d/ - JQI Wiki

Permanent link:
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/preferences

Last update: 2014/10/03 14:37

https://jqi-wiki.physics.umd.edu/d/
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/preferences

2016/07/05 14:16 39/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

Program only changes

While writing many table lines takes less than a second for most devices, we require the ability to only
reprogram slow devices when absolutely necessary. For example, the Novatech can support 215=32,768
outputs for each of two channels, but with only serial communication, the time it takes to write such a
program to the device is prohibitive. Luckily, the Novatech supports line-by-line modifications so a long
program can be written once (slow) and modified (quick, provided changes are line-wise only).

As programmed currently, devices (objects) prepare a “hardware image” or HWI (PrepareHWI.vi,
FinalizeHWI.vi), which, along with communication information, is actually programmed to the physical
hardware in the LoadHardware.vi method. Then, after waiting an appropriate time23) Clear Hardware.vi is
called for each device. Presently, many devices close their “task” or communication channel. This
requires the NI cards to always be reprogrammed since the “task” had been deleted. In a future
implementation, it would be possible to leave open a “task” (stop and restart if no changes) until it
needed to be reprogrammed.

As a result, of the implemented devices (PulseBlaster, Novatech, NI card, NIST DDS box) only the
Novatech and DDS are able to implement “program only changes.”24)

Novatech

To implement line-by-line functionality, Novatech/Load Hardware.vi tracks the “last HWI” for each unique
device it encounters. Then, if “Program only changes” is requested, the present HWI is compared to last
line-by-line. Differences are marked in a “skip” array and the two tableable channels are selectively
reprogrammed.

However, even if NOTHING changes, some serial commands still MUST be sent presently:

Nova Init: ensure fastest possible serial communication (3 writes, 2 reads)●

Nova FreqPowPhase: called 4 times to set static output for each channel (only really necessary for●

channels 2 and 3; 4 x 3 write, 3 read = 12 write, 12 read). These could be called selectively after
checking for a change.
Nova Table mode: set the tableable outputs for channel 0 and 1●

“M 0”: table programming mode (1 write/read)❍

(line-wise setting of any changed table lines; 2 writes per line, 1 each per channel)❍

“M t”: start tabled output (execute first line then wait for trigger, provided duration = 0xFF; 1❍

write/read)

Thus, the required overhead is 17 writes and 16 reads even if no table lines are programmed.

23) Only accounts for the time to complete the requested procedure, but the user can add “additional
delay” to ensure devices finish before they are stopped
24) As of 7/9/2014, this DDS functionality was untested.

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

From:
https://jqi-wiki.physics.umd.edu/d/ - JQI Wiki

Permanent link:
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/program_only_changes

Last update: 2014/07/09 14:34

https://jqi-wiki.physics.umd.edu/d/
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/program_only_changes

2016/07/05 14:16 41/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

PulseBlaster

Throughout many years, the group has relied on SpinCore PulseBlaster (PB) cards to provide digital
outputs and triggered timing for BEC experiments. There are many card versions around which will
probably result in proliferation of PulseBlaster device classes if their SpinAPI's are incompatible.
However, this no longer necessitates a fork of the SetList; rather it requires that each lab
instantiate the correct PB object version.

Trigger Polarity

A number of people have asked about variable polarity for trigger lines. Presently, every “Ramp” line is
implemented as a Loop/EndLoop so that the PB compactly executes the number of steps requested. For
standard (non-triggering) outputs, Loop and EndLoop are each fed the same value from “Output Bits,”
while for a line where “triggering?” is true Loop is HIGH and EndLoop goes LOW. The logic is highlighted
below:

Since we need to set output on Loop and EndLoop, the logic corresponds to two truth tables.

https://jqi-wiki.physics.umd.edu/d/_detail/documentation/software/computercontrol/setlist/pb_trigpolarity.jpg?id=documentation%3Asoftware%3Acomputercontrol%3Asetlist%3Apulseblaster
https://jqi-wiki.physics.umd.edu/d/_detail/documentation/software/computercontrol/setlist/pb_trigpolarity.jpg?id=documentation%3Asoftware%3Acomputercontrol%3Asetlist%3Apulseblaster
https://jqi-wiki.physics.umd.edu/d/_detail/documentation/software/computercontrol/setlist/pb_trigpolarity.jpg?id=documentation%3Asoftware%3Acomputercontrol%3Asetlist%3Apulseblaster
https://jqi-wiki.physics.umd.edu/d/_detail/documentation/software/computercontrol/setlist/pb_trigpolarity.jpg?id=documentation%3Asoftware%3Acomputercontrol%3Asetlist%3Apulseblaster
https://jqi-wiki.physics.umd.edu/d/_detail/documentation/software/computercontrol/setlist/pb_trigpolarity.jpg?id=documentation%3Asoftware%3Acomputercontrol%3Asetlist%3Apulseblaster

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

Loop: out \ trig? 0 1
0 0 1
1 1 1
EndLoop: out \ trig? 0 1
0 0 0
1 1 0

If one wants to force rising-edge triggering, it is apparent that one sends “out” OR “trig?” to Loop and
“out” AND NOT(“trig?”) to EndLoop.

However, for selectable polarity the truth tables could be modified so that the “output” of a trigger line
defines it's “off” state (i.e. 0 for rising edge, 1 for falling edge):

Loop: out \ trig? 0 1
0 0 1
1 1 0
EndLoop: out \ trig? 0 1
0 0 0
1 1 1

Then, Loop gets passed “out” XOR “trig?” while EndLoop simply gets “out.” If this change is
implemented, one should look at the TriggerCol column class AND the way PB initializes
(Pulseblaster.lvclass/InitDevice.vi and /ManageDevice.vi) so provide the user with a protected way to
modify the polarity.

From:
https://jqi-wiki.physics.umd.edu/d/ - JQI Wiki

Permanent link:
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/pulseblaster

Last update: 2014/07/29 12:21

https://jqi-wiki.physics.umd.edu/d/
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/pulseblaster

2016/07/05 14:16 43/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

LuaEvaluatorAPI.lvlibp

Presently, LuaEvaluatorAPI.lvlibp created with 2013 will NOT work with 2014.25) Repacking the
LuaEvaluatorAPI packed library, is fairly easy but must be done for each version of LabVIEW. If the
packed library isn't from the correct version, LabVIEW won't be able to load the project.

To make a packed library, open the LuaEvaluator repository in the desired version of LabVIEW. In the
Project Explorer, expand “Build Specifications” and right-click “LuaEvaluatorAPI” and choose Build.
LabVIEW will make a packed library in the folder LuaEvaluator/LuaEvaluatorAPI. All that remains to
integrate this with SetList is to replace the file at SetList/codes/PackedLibraries/LuaEvaluatorAPI.lvlibp
with your new one.

Joe Tiamsuphat figured out how to pack the library, so you could also ask him if you have any trouble.

Unless other packed libraries are used, all other files should open correctly in newer versions of LabVIEW.

25) Zach Smith may find time to look into making the library more portable through preferences

From:
https://jqi-wiki.physics.umd.edu/d/ - JQI Wiki

Permanent link:
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/repacking_lua

Last update: 2014/10/07 17:39

https://jqi-wiki.physics.umd.edu/d/
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/repacking_lua

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

SetList FAQs

These questions come up frequently. While some of them are addressed on the “About SetList” tab
within SetList, the wiki affords more room for detailed explanation.

How are Ramps constructed?

Any “rampable” output parses it's table contents through the Lua “Ramp Generator.”

Here's a discretized linear ramp compared to the exact line from 0 to 1:

This was generated with the SetList table

Mode Delay Step Output
Ramp 1 s 0.2 s LineRamp(f,0,1)

As you can see from the figure, the output is stepped through five steps (npnts =
floor(delay/step)) with stepsize = delay/npnts and each endpoint is included in the output
points. In the case above, the step divided the delay without a remainder. If the floor rounds down, the
actual stepsize will be larger than that specified in step.

Ramps pre-define four variables

f - fractional position within a ramp●

t - actual time within a ramp (at evaluated points)●

dt - time between evaluated points●

tMax - total time for Ramp●

https://jqi-wiki.physics.umd.edu/d/_detail/documentation/software/computercontrol/setlist/lineramp.png?id=documentation%3Asoftware%3Acomputercontrol%3Asetlist%3Asetlistfaqs

2016/07/05 14:16 45/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

The requirement that both start and end points be points in the ramp causes dt to differ from the
stepsize, with dt = delay/(step-1). If you look closely, these points {0,0.25,0.5,0.75,1} are
the five points where the discretized LineRamp actually samples/intersects the line. However, these are
not the times when these sampled values are output! The disconnect comes between calculating output
values and when they are actually triggered.

Squinting at the discretized output, there is clearly a bias to be below at early times and above at late
times due to forcing the endpoints to be output with equal stepsize duration. This approaches the
straight line with fine enough sampling; in some sense the effect of the bias is to increase the slope of
the ramp while adding a hold at the start and end points.

In summary, below are listed the calculated values26) output at the trigger times:

Trig. time f t dt tMax
0 0 0 0.25 1
0.2 0.25 0.25 0.25 1
0.4 0.5 0.5 0.25 1
0.6 0.75 0.75 0.25 1
0.8 1 1 0.25 1

Think of dt, f, t as the sampling interval, fraction, time.

26) f and t only match because the delay time is 1 s.

From:
https://jqi-wiki.physics.umd.edu/d/ - JQI Wiki

Permanent link:
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/setlistfaqs

Last update: 2014/08/29 18:30

https://jqi-wiki.physics.umd.edu/d/
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/setlistfaqs

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

SetList Structure

This is intended as a high-level overview of the program structure for SetList. Is is not even necessary for
the typical device programmer to understand anything but the Device Classes and UI Column Classes.

Even experienced programmers may benefit from looking at LabVIEW Object-Oriented Programming FAQ,
as some of the ways LabVIEW has implemented object-oriented programming are non-intuitive or counter
to other languages. The project explorer is the main place to navigate the SetList project and it's various
class definitions.

Project Explorer

brief description, NI link●

hints for navigating classes:●

adding_a_new_lvclass❍

hierarchy tree: right-click a .lvclass file in the project explorer and select “Show Class Heirarchy”❍

right click for add new VI from template❍

viewing entire private data for class (need to look at all ancestors too!)❍

…●

Block Diagram

The block diagram contains three main loops:

UI input event handling●

Hardware Update●

Sequencing●

Device Classes

As it presently exists, the device class hierarchy is

Device●

Master Device❍

PulseBlaster■

NI card❍

DDS❍

Novatech❍

http://www.ni.com/white-paper/3573/en/
http://zone.ni.com/reference/en-XX/help/371361K-01/lvconcepts/using_labview_projects/

2016/07/05 14:16 47/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

A Device (or one of its children) consists of “Private Data” and a set of “Methods.” The Device class
defines a data and method structure that each child can inherit, override and/or augment. In very broad
strokes, the data owned by each instance of a child device is its

portion of the Setlist table or software image (SWI, human readable)●

communication method●

hardware image (HWI, device readable)●

Column Object array●

When possible, general methods are inherited by all devices e.g. for reading/writing SWI, using Columns.
Each specific child device has its own implementation of methods like “PrepareHWI.vi” and “Load
Hardware.vi,” which interpret the SetList table strings with LuaVIEW. The big improvement in flexibility
comes in the class organization–we can dictate what methods each device must provide even if we don't
know a priori how they will work. This allows one to program “read SWI and prepare HWI” as a loop over
devices whose specific implementation of a method are “dynamically dispatched” at runtime.

This array of devices contain almost all information needed to program an experiment. Additional
components which are bundled into a cluster and saved together are Layouts, User Defined Functions,
and the Variable Manager.

UI Column Classes

The user interface (UI) for programming devices is the SetList table. At its core, it is simply a 2D string
array. Programming everything as a string means that any element can (in principle) be a variable; while
this has long been true for Analog outputs, this is also now true of Digital outputs. The Column classes
provide a UI skin to the string table to provide some error checking and simplify the programming tasks.

The column class hierarchy is

Column (general one-color column)●

DigitalCol (change color for high/low/variable)❍

GroupCol (additional methods for row-wise “grouping” to enable/disable sets of instructions)■

SingleValCol (for static outputs which cannot be updated during a cycle)❍

ModeCol (for Pulseblaster, this column restricts input to predefined modes)❍

TriggerCol (simplifies non-programmable column display, like a master trigger line)❍

MenuCol (for picking from a drop-down menu on a mouse-click)❍

MenuDisableCol (for when your menu able to selectively enable/disable neighboring cells)■

SingleValMenuCol (for static outputs picked from a menu)■

Every object contains a Column Array in its private data which defines that object's appearance within
the SetList table. The column classes contain methods to handle keyboard and mouse input and display
“layouts.” Hopefully, any future device SWI programming functionality can be built from these classes,
but a new child class might be required.

Last
update:
2016/07/05
13:56

documentation:software:computercontrol:setlist:home https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/home

https://jqi-wiki.physics.umd.edu/d/ Printed on 2016/07/05 14:16

Hardware Programming

Variable Manager

The Variable Manager handles both static and sequenced variables (which have been combined). The
“VariableManagerCodes” take care of may things including

Controlling sub-panel window within Variables tab●

interfacing with variables directly from SetList table through dialog box●

multi-dimensional sequencing with functional point-spacing●

providing current variable list to HWI parser●

SetList-Level Preferences

These are preferences that apply at the lab level, rather than to individual procedures. These are saved
in an XML file that is loaded and parsed at run-time. It is human-readable but you shouldn't ever need to
look at it.

The system and how to use it is described in more detail at SetList Preferences

From:
https://jqi-wiki.physics.umd.edu/d/ - JQI Wiki

Permanent link:
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/structure

Last update: 2014/10/08 18:20

https://jqi-wiki.physics.umd.edu/d/
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/structure

2016/07/05 14:16 49/49 SetListDocumentation

JQI Wiki - https://jqi-wiki.physics.umd.edu/d/

UI Tips for SetList

While the UI is intended to be as intuitive as possible, please place tips here if there's something that
took you a while to figure out how to do. Additionally, if you've discovered some way of using the UI tools
that you think is neat and useful, tell us about it.

Left-clicking will allow you to edit/toggle individual cells in the SetList table. Right-click will bring up a
context menu. This menu will change based on which column you click and whether you click

the header (change entire column)●

a cell (insert, add/edit variable, delete, paste…)●

a selection (copy)●

below the table data (insert rows up to, clear selection…)●

Selecting cells

Left-clicking a row/column header will select the entire row/column. An additional shift-click will select●

the spanning rows/cols.
Within non-digital cels, you can click-and-drag to make a selection●

For digital cells, click-and-drag will work inside the edit box (double click first if a 1/0).●

From:
https://jqi-wiki.physics.umd.edu/d/ - JQI Wiki

Permanent link:
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/ui_tips

Last update: 2014/07/25 11:19

https://jqi-wiki.physics.umd.edu/d/
https://jqi-wiki.physics.umd.edu/d/documentation/software/computercontrol/setlist/ui_tips

	Table of Contents
	Adding a New Device
	Adding a new .lvclass
	Programming for your <NewDev>.lvclass
	Configuring Table appearance
	Adding your new device

	Analog Inputs
	Device Configuration
	Shared Variables
	Naming Scheme
	Data Format

	Sample Reader

	Bugs & Feature Requests
	Feature Requests
	Major Bugs
	Minor Bugs

	Column Types
	Generic Columns
	Column
	DigitalCol
	SingleValCol
	TriggerCol
	MenuCol

	Master-Only Columns
	GroupCol
	ModeCol

	Feedback Overview
	TCP Communications
	Getting the Port: NI Service Locator
	Communication Protocol

	Expected JSON Contents
	General Format
	Variable Format
	Variable Set

	Command Formats
	Immediately Apply Variables
	Sequence Set Variables
	Mulligans

	Example Clients
	Why TCP?

	Getting SetList: help for the uninitiated
	Step-by-step
	Git Shell tips

	Switching branches

	New SetList
	Description
	Where can I get it?
	Releases

	New Features
	Automatic Mulligans
	Feedback via Variables
	Analog Inputs as Shared Variables

	Bugs & Feature Request
	UI tips
	For Programmers
	Export SetList namespace

	LuaVIEW in SetList
	Packed library
	LuaEvaluatorAPI
	Init code

	Deprecated Feedback Interface
	Variables
	TCP Settings
	Protocol
	Commands
	Responses

	Mulligans
	TCP Settings
	Protocol

	Example Clients
	Why TCP?

	SetList Preferences
	Adding a Preference
	Using Preferences
	Removing a Preference
	XML Preferences Format
	Example Preferences file

	Program only changes
	Novatech

	PulseBlaster
	Trigger Polarity

	LuaEvaluatorAPI.lvlibp
	SetList FAQs
	How are Ramps constructed?

	SetList Structure
	Project Explorer
	Block Diagram
	Device Classes
	UI Column Classes
	Hardware Programming
	Variable Manager
	SetList-Level Preferences

	UI Tips for SetList
	Selecting cells

